Requirements on Internal Quality of Bloom Products

By Dr. Sarosh Engineer, Dr. Jürgen Cappel, Heinz Schult, Rainer Isert

c/o Cappel Stahl Consulting GmbH, Meerbusch, Germany

Metallurgical Symposium
October 27th, Busan, Korea
Agenda

1. Introduction
2. Trends in Automotive Markets and Impact on Steel Product Requirements
3. Defects on Bars and Wires and their Origin (Internal Defects)
4. Testing Methods and Quality Rating (Cracks, Macro & Micro Cleanliness, Segregations)
5. Bloom Casting Process (CCM Layout, Quality Results)
6. Metallurgical Process Route (Process Routes, Quality Results)
7. Conclusion/Outlook
Steel Products in Car Engine and Drive Train Manufacturing (Long Products)

Power train (transmission/gear: 400 kg)
- 59% engine (crankshaft, fuel pump, cylinders, ...)
- 16% troques converter (differential case, yoke, ringgear, ...)
- 16% transmission (gear, manual transmission, ...)
- 9% drive shafts (lay shafts, output flange, ...)

Drive train (chassis: 285 kg)
- 31% wheels and tires (wheels)
- 22% rear axle (axle tubes, link shafts, ...)
- 21% brake system (brake pistons, ...)
- 18% front axle (front dumper, ...)
- 8% steering system (steering knuckle, ...)

Total weight balance:
1,740 kg/car = 39% body + 23% power train + 16% drive train + 16% interior + 6% electronics (share of steel = Ø 57,6 % (53-61%))

Source: Initiative Massiver Leichtbau
Introduction

Typical Special Bar Quality (SBQ) Mill Layout

Typical SBQ Product Portfolio

LBM Ø 12,5%
LBM □ 4,2%
SMB & BIC 50,0%
Wire 35,3%

Typical SBQ Quality Portfolio

44,1%
22,3%
11,9%
7,4%
7,4%
6,5%
0,3%
7,5%

LBM = heavy Section Mill SMB = light Section Mill
BIC = Bar in Coil Line Wire = Wire Rod Line
Agenda

1. Introduction
2. Trends in Automotive Markets and Impact on Steel Product Requirements
3. Defects on Bars and Wires and their Origin (Internal Defects)
4. Testing Methods and Quality Rating (Cracks, Macro & Micro Cleanliness, Segregations)
5. Bloom Casting Process (CCM Layout, Quality Results)
6. Metallurgical Process Route (Process Routes, Quality Results)
7. Conclusion/Outlook
Trends in Automotive Markets

General Trends

• Aim for individual, independent, motorized, any time available mobility
• Higher comfort standards (comfort, availability of space, variability, motoring comfort, quality of workmanship)
• Higher safety standards (passenger safety and pedestrian safety)
• Efficiency in cost of acquisition and running
• Warranties on complete vehicles and parts
• Environmental friendly technology

New Trends

• Electrification (desirable, ecofriendly products)
• Connectivity (extending lifestyle to the cars)
• Autonomous driving (fancy technology)
• Diverse mobility (consumers prefer access over ownership)
The “Spiral” of Weight Increase

Increasing Requirements

- Safety + kg
- Comfort + kg
- Road Performance + kg
- Space + kg
- Variability + kg
- Quality + kg

Countermeasure

Weight Increase Spiral

OEM’s:
- New Car Concepts
- Focus Car Body
- Top-Down Approach

Tear 1 & 2 Suppliers:
- New Materials
- New Processes
- Construction Know-How
- Design Know-How

Common Task: Weight Reduction

Trends in Automotive
Trends in car body manufacturing for **flat steel** products:

- **New Steel Grades**: high deformable deep drawing steels (DD), advanced high strength steels (AHS), high strength Boron steels (HSB), dual phase steels (DP), high grade steel (HG), complex phase steel (CP), Martensitic steel (MS), partial Martensitic steel (PM), residual Austenite steel (TRIP) and Manganese alloy steel (TWIP)
- **New Steel Processing Concepts**: tailored welded blanks, tailored rolled blanks, tailored tubes, tailored tempering, additive manufacturing (3-D printing)
- **New Car Body Concepts**: space frame, composite structures
- **Replacement of Materials**: steel vs Aluminum, Magnesia, Plastics, Carbon
Trends in automotive manufacturing for long steel products:

- **New/modified Steel Grades:** advanced high strength steels (AHS), high strength Boron steels (HSB), Bainitic steel (BDS), rear earth element steel (Tellurium), task is to reduce production cost by saving heat treatment.

- **Design Optimization:** reduction of non stress bearing cross sections (tubes, hollows, webs, profiles), grooves, notches, dents, slim constructions, near-net shapes.

- **New Steel Processing Concepts:** axial forming (tubes), swaging (hollows), forging of constrictions, combination of production processes, optimization of grain and surface treatment, additive manufacturing (3-D printing).

- **New Part Construction Concepts:** replacement of welded by forged constructions, replacement of screw by toothed connections, functional integration of parts, assembled vs massive parts.

- **Substitution:** cast and welded steel vs forged Aluminum.
Agenda

1. Introduction
2. Trends in Automotive Markets and Impact on Steel Product Requirements
3. Defects on Bars and Wires and their Origin (internal defects)
4. Testing Methods and Quality Rating (macro & micro cleanliness, Internal Cracks & Segregations)
5. Bloom Casting Process (CCM layout, Quality Results)
6. Metallurgical Process Route (Process Routes, Quality Results)
7. Conclusion/Outlook
Categorized Defects on Bars and Wires

- Cracks
- Laps
- Fins
- Rolled in
- Scratches
- Roll Marks
- Fire crack transfer marks
- Roughness
- Scale
- Mechanical damage
- Shell
- Hot Shortness and burnt steel
- Pipe
- Core segregation
- Non-metallic Inclusions
- Surface decarburization
- Hard spots
- Coarse grain
- Grain boundary damage
- Fused-in extraneous matter

In Standard Defect Classification Brochures of the Steel Companies between 20 – 30 different Inner and Surface Defects are categorized. Most of them are related to Surface Defects caused by mechanical Damages.
Typical Bar & Wire Defects Caused from Internal Quality of Blooms & Billets

heavy pipe
- **occurrence**: Cavity from casting, mostly connected with non-metallic inclusions.
- **detection**: by ultrasonic testing billets or metallographic examination.

non-metallic inclusions
- **occurrence**: by erosion of refractory linings, converters, ladles, runner bricks, during casting by casting powder in the mold (billet surface).
- **detection**: by microscopic examination, blue brittleness specimens.

core segregation
- **occurrence**: Phosphorus stringers
- **detection**: by microscopic examination
Defect on Continuous Cast Materials

- Longitudinal Mid-Face Cracks
- Star Cracks
- Sub-Surface Porosity
- Pinholes
- Transverse Cracks
- Corner Cracks
- Edge Cracks/Splits
- Longitudinal Corner Cracks
- Off-Corner Cracks
- Inter Columnar Cracking
- Centreline Segregation
- Spider Cracks

+ Scale, Oscillation Marks and Nonmetallic Inclusions

Source: Corus
Agenda

1. Introduction
2. Trends in Automotive Markets and Impact on Steel Product Requirements
3. Defects on Bars and Wires and their Origin (internal defects)
4. Testing Methods and Quality Rating (Cracks, Macro & Micro Cleanliness, Segregations)
5. Bloom Casting Process (CCM layout, Quality Results)
6. Metallurgical Process Route (Process Routes, Quality Results)
7. Conclusion/Outlook
ASTM E381 (1993), the Basis for Steel Casting Quality Examinations

Random Conditions

Subsurface Conditions

Centre Segregation

Other

Source: ASTM E381
Tensions & Hot Crack Forming during Bending & Unbending

Crack Appearance	Appearance on Sample	Sample Orientation
Longitudinal Crack | Longitudinal |
Star Crack | Surface |
Corner Crack | Cross |
Depression Crack | Cross |
Bulging Crack | Longitudinal |
Triple Point Crack | Cross |
Unbending Crack | Cross |

Source: Schrewe, H.; Continuous Casting of Steel
Hot Crack Forming Fundamentals (2 of 3)

High-Temperature Ductility of Structural Steels, Areas of Reduced Ductility/Increased Hot Cracking Sensitivity

Precipitation Area
Disadvantageous Elements:
Al, N, Nb, Ti, V, Cu, Sn, Ni,

Area of liquid, low melting Phases
low Mn/S ratio, S, Te, P, Cu, Sn, Pb, Bi, B,

Temperature Range:
900 – 1.200 °C

Zero Ductility Temperature (ZDT)
Liquidus Temperature (TL)

Source: Huchtemann, Wulfmeier; Stahl und Eisen 118 (1998)
Example for Control Image Classification: **Internal Cracks**

Class 1
Class 2
Class 3
Class 4
Class 5

Example for Control Image Classification: **Center Line**

Class 1
Class 2
Class 3
Class 4
Class 5

Various Classification Standards have been developed by the Steel Producing Companies available for Reference. The Quality Checks are carried out on Macro Etching Samples.
Steel cleanliness is differentiated between **Microscopic** and **Macroscopic** inclusions.

- **Microscopic** inclusions in accordance with DIN 50602 are inclusions with a maximum size of 0.030 mm². The test is carried out by a microscope at x 100 magnification. So under a microscopic the maximum size of the inclusions are 100 mm x 3 mm.

- **Macroscopic** inclusions are inclusions exceeding the limit of microscopic inclusions.
1) Microscopic Inclusions:

- DIN 50602 / ASTM E45 / ISO 4967 / EN 10247
- EN 10247 is not being used by customers. In Germany the (officially invalid) DIN 50602 is used by customers as their internal standard. A new version of the DIN 50602 is now being processed by the German Steel Institut VDEh
- ASTM E45 and ISO 4967 are similar.
- Convertibility between the ASTM E45 and DIN 50602 not possible

<table>
<thead>
<tr>
<th>Type of Inclusions</th>
<th>DIN 50602</th>
<th>ISO 4967 / ASTM E 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfide Type</td>
<td>Inclusion SS</td>
<td>Group A</td>
</tr>
<tr>
<td>Aluminate Type</td>
<td>Inclusion OA</td>
<td>Group B</td>
</tr>
<tr>
<td>Silicate Type</td>
<td>Inclusion OS</td>
<td>Group C</td>
</tr>
<tr>
<td>Globular Oxide Type</td>
<td>Inclusion OA</td>
<td>Group D</td>
</tr>
</tbody>
</table>

Furthermore the ISO 4967 and ASTM E45 differentiate between inclusions of the **fine/thin** or **thick/heavy** series. The difference is in the width of the inclusion.
Micro-Inclusion Classification according to DIN 50602 (3 of 12)

A-Type Inclusions *(Sulfide type, MnS)*, highly malleable, individual grey particles with a wide range of aspect ratios (length/width) and generally rounded ends, *deformable* during rolling.

B-Type Inclusions *(Alumina type, Al₂O₃)*, numerous non deformable, angular, low aspect ratio (generally <3), black or blueish particles (at least three) aligned in the deformation direction, cubic, *stretchable* during rolling.

C-Type Inclusions *(Silicate type, (CaO)ₘ(SiO₂)ₙ)*, highly malleable, individual black or dark grey particles with a wide range of aspect ratios (generally >3), black or blueish, randomly distributed particles, *deformable* during rolling.

D-Type Inclusions *(Globular or oxide type, (CaO)ₘ(Al₂O₃)ₙ, CaS)*, *non deformable* during rolling, angular or circular, low aspect ratio (generally <3), black or blueish, randomly distributed particles.

Source: DIN 50602
Comments on Micro-Inclusions in Steel (4 of 12)
2) Macroscopic Inclusions

a) Tests on Rolled Samples:
 - Blue Fracture Test (SEP 1584/ ISO 3763)
 - Ultrasonic Immersion Test at FBH 0,3 mm (SEP 1927). This test can only be done on samples
 - Inline Ultrasonic Test at FBH 0,7 mm or 0,5 mm (for mass production)
 - Experiments are being carried out to do tests at FBH 0,2 mm (experimental stage)

b) Test on CCM Samples:
 - MIDAS (Mannesmann Inclusion Detection by Analyzing Surfboards) Testing Standard
 - SILENOS Testing Standard

Abbreviations: SEP = Stahleisen Prüfblatt FBH =
Macro Inclusions (> 50 μm)
big (> 100μm) Ca₉Al₃ inclusions without Sulfur in a narrow inclusion band below the surface

Micro Inclusions (< 30 μm)
widely scattered, small (< 30μm) CaS inclusions

Source: SZMF
Macro and Micro Inclusion Population on the same Specimen (7 of 12)

MIDAS Sample: Calcium-Aluminate Macro-Inclusions (> 50 μm) combined with SEN Refractory Particles (Zr)

Sulfur Print Sample: Mixed CaS and Calcium-Aluminate Micro-Inclusions (< 30 μm)

Source: HKM
Macro Inclusion Types detected in (Si-killed) Steel (9 of 12)

Multi-Phase Inclusion of Casting Powder (contaminated with Na, K)

Multi-Phase Inclusion of Ladle Slag (contaminated with Zr)

Multi-Phase Inclusion of Refractory Material (contaminated with Al, Si)

Source: SZMF
A long term investigation on inclusion types, detected by ultrasonic immersion testing on bearing steel came to the conclusion summarized above.
Effect of Slag Composition on Inclusion Composition (11 of 12)

- Deformable Inclusions
- Stretchable Inclusions
- Non Deformable Inclusions
Deformability of Macro Oxide Inclusion Types (12 of 12)

Transverse micro-sections:
(a) Undeformable CA$_2$, CA$_6$ or Al$_2$O$_3$
(b,c) Plastic flow or disintegration of slag
(d) Dissemination of broken-off clusters

Horizontal micro-sections:
(e) Emulsified slag inclusion
(f) Coral-shaped alumina cluster

Source: SZMF
Hot Crack Forming in Cast Material (1 of 6)

Example for Control Image Classification: **Internal Cracks**

![Control Image Classification: Internal Cracks](image1)

- Class 1
- Class 2
- Class 3
- Class 4
- Class 5

Example for Control Image Classification: **Center Line**

![Control Image Classification: Center Line](image2)

- Class 1
- Class 2
- Class 3
- Class 4
- Class 5

Various Classification Standards have been developed by the Steel Producing Companies available for Reference. The Quality Checks are carried out on Macro Etching Samples.
Mechanism of Center Segregation in Cast Material (2 of 6)

Center Segregation

- **Absorption of Melt because of Bulging during Casting**
 - **Accurate CCM Machine Alignment** (avoiding misalignment)
 - Strictly avoid any kind of deformation in the CCM
 - Accurate adjustment of the machine roll gap and taper
 - **Minimization of the Bulging**
 - Reduction of roll diameter and roll distance
 - Introduction of split rollers with small diameter

- **Absorption of Melt because of Shrinking during Solidification**
 - **Suppression of shrinking melt flow**
 - Soft Reduction
 - **Preference of non-directed solidification**
 - Electromagnetic Stirring
Mechanism of Center Segregation in Cast Material (3 of 6)

Simplified schematic of formation of V-segregation, centerline segregation and negative Macro-segregation near a center of cross section in a continuous cast bloom

Example for Carbon Segregation at high Carbon Steel (0.80 – 0.84 %C)
Optimization of Carbon Segregation by Soft Reduction of Blooms

Source: Cheng, JI et al.: ISIJ International, Vol. 54 (2014), No. 3
Reheating Condition for Bearing Steel (6 of 6)

Reheating Condition in the XXX Rolling Mills (1 Heat, 85 t = 14,2 Blooms, 6,0 t)

Large Bar Mill:
1 Bloom (□ 320 x 480 mm²; 5,4m = 6,0t) =
2 Billets (□ 180 mm²; 12m = 2,95t) =
3 Billets (□ 150 mm²; 12m = 2,05t)

Small Bar Mill:
1 Billet (□ 180 mm²; 12m) = 2,95t)
= 20 Bars (Ø 55-65 mm; 7,0m =)

Rolled Bar Samples: 6 samples are taken from 4 bars of the heat, selection by purpose
Agenda

1. Introduction
2. Trends in Automotive Markets and Impact on Steel Product Requirements
3. Defects on Bars and Wires and their Origin (internal defects)
4. Testing Methods and Quality Rating (macro & micro cleanliness, Internal Cracks & Segregations)
5. Bloom Casting Process
6. Metallurgical Process Route (Process Routes, Quality Results)
7. Conclusion/Outlook
Typical Continuous Bloom Casting Machine Details

- **Steel Making**: EAF, LF, VD Tank
- **Ladle cap.**: 100 t
- **Production**: 850'000 tpy
- **Strand No.**: 3
- **Sections**: 380x490mm
- **Radius**: 16.5 m (three point UB)
- **Steel Grades**: Automotive & special engineering steels (case-hardening, quench & temper, bearings, large diameter shafts, special tubes)

Source:
Macroetching Samples Bloom – Billet – Bar (SUJ2RI; C: 0,97 – 1,01 %; Cr: 1,45 – 1,51 %)
Macroetching Samples Bloom – Billet – Bar (44MNSIVS6 C: 0,41 – 0,44; Cr: 0,22 – 0,28 %)
Soft Reduction Problematic with thick Blooms

With a uniform solidification (shell growth) from all four sides as a result of uniform spray water cooling of the broad and narrow bloom sides the condition for a successful soft reduction of the liquid core become more and more difficult.
Reheating Problematic with thick Blooms

The samples show a Bloom inspected after reheating in the RHF of a LBM for six hours holding time at temperature > 1.200 °C (before rolling). The 1st row shows cross section images at different length, the other rows show longitudinal section images at different width of the bloom.

It becomes obvious that for this grade (44MnSiVS6) the center segregation from the continuous casting at ½ width could not be eliminated sufficiently in the furnace.
Segregation Coefficients with different Stirrer Positions and Soft Reduction

The graph shows the change in the center segregation index for one grade with application of different tools for solidification improvement. The best results are achieved with Soft Reduction + Mold EMS.
Agenda

1. Introduction
2. Trends in Automotive Markets and Impact on Steel Product Requirements
3. Defects on Bars and Wires and their Origin (internal defects)
4. Testing Methods and Quality Rating (macro & micro cleanliness, Internal Cracks & Segregations)
5. Bloom Casting Process (CCM layout, Quality Results)
6. Metallurgical Process Route (Process Routes, Quality Results)
7. Conclusion/Outlook
Typical Upstream Layout of a Engineered Steel (SBQ) Complex

Raw Materials → Melting → Refining → Cleanliness Improvement → Casting → Blooms to Rolling Mills

Scrap → AC Furnace → Ladle Furnace

VOD Plant → Bloom Caster

RH Plant → Rinsing Station → Billet Caster
Typical Steelmaking Process Routes

Metallurgy: AI-killed

- **Grade:** SCM920HVS1 – 20CrMoS5
- **Type:** Quench & Tempering Steel
- **Group:** T/M Gear
- **Application:** Drive Pinion, Ring Gear, Pinion Gear, Lay Shaft,
- **Dimension:** Ø 80-160, □ 180

Metallurgy: Si-killed

- **Grade:** S70CVS1 -
- **Type:** Press Hardening Steel (high strength)
- **Group:** E/G Engine
- **Application:** Crank Shafts, Conrod, Steering Knuckle,
- **Dimension:** □ 180
Steel Refining Slag Compositions

Non metallic Inclusions and Ladle Slag Composition

- Homogenius, liquid Ladle Slag, good formable C_nS_m inclusions
- Sticky Ladle Slag, strong Skull and Glaze Formation
- Good formable C_nS_m Inclusions
- Crusty Ladle Slag, strong Skull and Glaze Formation
- Small, cubic Alumina Clusters, breakable
- Homogenius, liquid Ladle Slag, globular, non formable Inclusions

3.2. Metallurgy
Agenda

1. Introduction
2. Trends in Automotive Markets and Impact on Steel Product Requirements
3. Defects on Bars and Wires and their Origin (internal defects)
4. Testing Methods and Quality Rating (macro & micro cleanliness, Internal Cracks & Segregations)
5. Bloom Casting Process (CCM layout, Quality Results)
6. Metallurgical Process Route (Process Routes, Quality Results)

7. Conclusion/Outlook
Conclusions

- Future trends in Automotive Markets will continue to increase in passenger safety and comfort with negative impact on vehicle weight and fuel efficiency.
- Car manufacturers differentiate their customer services by longer warranties.
- “Long Life Cycle” and “Zero Defect” approaches continue to create pressure on the product performance of part and material suppliers.
- New forming and manufacturing technologies require more sophisticated products.
- New an better performing testing methods for steel semi-finished products lead to more detections.
- Lean and highly stressed applications for automotive parts draw the attention to inner quality of steel materials.
- Production of long steel products in the future requires increasing focus on steel cleanliness as well as internal quality in terms of cracks and avoiding segregations.
- Small product dimensions are less critical compared to bigger and huge dimensions.
Thank You very much for Your Attention

I appreciate your comments and questions